Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 18, 2026
-
ABSTRACT GIS and GIScience education have continually evolved over the past three decades, responding to technological advances and societal issues. Today, the content and context in which GIScience is taught continue to be impacted by these disruptions, notably from technology through artificial intelligence (AI) and society through the myriad environmental and social challenges facing the planet. These disruptions create a new landscape for training within the discipline that is affecting not onlywhatis taught in GIScience courses but alsowhois taught,whyit is being taught, andhowit is taught. The aim of this paper is to structure a direction for developing and delivering GIScience education that, amid these disruptions, can generate a capable workforce and the next generation of leaders for the discipline. We present a framework for understanding the various emphases of GIScience education and use it to discuss how the content, audience, and purpose are changing. We then discuss how pedagogical strategies and practices can change how GIScience concepts and skills are taught to train more creative, inclusive, and empathetic learners. Specifically, we focus on how GIScience pedagogy should (1) center on problem‐based learning, (2) be open and accelerate open science, and (3) cultivate ethical reasoning and practices. We conclude with remarks on how the principles of GIScience education can extend beyond disciplinary boundaries for holistic spatial training across academia.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available January 2, 2026
-
Abstract Our previous studies (Shields et al 2020 J. Phys. B: At. Mol. Opt. Phys. 53 125101; Shields et al 2020 Euro. Phys. J. D 74 191) have predicted that the atom-fullerene hybrid photoionization properties for X = Cl, Br and I endohedrally confined in C 60 are different before and after an electron transfers from C 60 to the halogen. It was further found as a rule that the ionization dynamics is insensitive to the C 60 level the electron originates from to produce X − @ C 60 + . In the current study, we report an exception to this rule in F@C 60 . It is found that when the electron vacancy is situated in the C 60 level that participates in the hybridization in F − @ C 60 + , the mixing becomes dramatically large leading to strong modifications in the photoionization of the hybrid levels. This novel effect is fundamentally based on a level-crossing phenomenon driven by the electron transfer in F@C 60 . But when the vacancy is at any other pure level of C 60 , the level-invariance is retained showing weak hybridization. Even though this case of F@C 60 is an exception in the halogen@C 60 series, the phenomenon can be more general and can occur with compounds of other atoms caged in a variety of fullerenes. Possible experimental studies are suggested to benchmark the present results.more » « less
An official website of the United States government
